OX-A431 Oxidising Gas Sensor - Ozone + Nitrogen Dioxide - 4-Electrode

Top View
Bottom View

Dimensions are in millimetres ($\pm 0.15 \mathrm{~mm}$).

Specification O_{3} Sensing			
Performance	Sensitivity Response time Zero current Noise* Range Linearity Overgas limit *Tested with Alphasens	nA/ppm at $1 \mathrm{ppm} \mathrm{O} \mathrm{O}_{3}$ t90 (s) from zero to $1 \mathrm{ppm} \mathrm{O}_{3}$ $n A$ in zero air at $20^{\circ} \mathrm{C}$ ± 2 standard deviations (ppb equivalent) ppm O_{3} limit of performance warranty ppm error at full scale, linear at zero and $20 \mathrm{ppm} \mathrm{O}_{3}$ maximum ppm for stable response to gas pulse FE low noise circuit	$\begin{aligned} & -200 \text { to }-650 \\ & <80 \\ & -70 \text { to }+70 \\ & 15 \\ & 20 \\ & < \pm 0.5 \\ & 50 \end{aligned}$
Lifetime	Zero drift Sensitivity drift Operating life	ppb equivalent change/year in lab air \% change/year in lab air, monthly test months until 50% original signal (24-month warranted)	$\begin{aligned} & 0 \text { to } 20 \\ & <-20 \text { to }-40 \\ & >24 \end{aligned}$
Environmental	Sensitivity @ $-20^{\circ} \mathrm{C}$ Sensitivity @ $40^{\circ} \mathrm{C}$ Zero @ $-20^{\circ} \mathrm{C}$ Zero @ $40^{\circ} \mathrm{C}$	```% (output @ -20}\mp@subsup{0}{}{\circ}\textrm{C}/\mathrm{ /output @ 20}\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{) @ 2ppm O % (output @ 40 C/output @ 20'0}\textrm{C}\mathrm{)@ 2ppm O nA nA```	60 to 80 80 to 105 0 to 25 20 to 90
Cross Sensitivity	$\mathrm{H}_{2} \mathrm{~S}$ sensitivity NO sensitivity Cl_{2} sensitivity SO_{2} sensitivity CO sensitivity $\mathrm{CO}_{2} \mathrm{H}_{4}$ sensitivity NH_{3} sensitivity H_{2} sensitivity CO_{2} sensitivity Halothane sensitivity	\% measured gas @ 5ppm $\mathrm{H}_{2} \mathrm{~S}$ \% measured gas @ 5ppm NO \% measured gas @ 5ppm Cl_{2} \% measured gas @ 5ppm SO_{2} \% measured gas @ 5ppm CO \% measured gas @ 100ppm $\mathrm{C}_{2} \mathrm{H}_{4}$ \% measured gas @ 20ppm NH_{3} \% measured gas @ 100ppm H_{2} \% measured gas @ 5\% volume CO_{2} \% measured gas @ 100ppm Halothane	$\begin{aligned} & <-80 \\ & <5 \\ & <100 \\ & <-3 \\ & <-3 \\ & <0.1 \\ & <0.1 \\ & <0.1 \\ & <0.1 \\ & <0.1 \end{aligned}$
Key Specifications	Temperature range Pressure range Humidity range Storage period Load resistor Weight	${ }^{\circ} \mathrm{C}$ kPa \% rh continuous months @ 3 to $20^{\circ} \mathrm{C}$ (stored in sealed pot) Ω (AFE circuit is recommended) g	-30 to 40 80 to 120 15 to 85 6 33 to 100 < 6

Figure 1 Sensitivity Temperature Dependence To 1ppm O_{3}

Figure 1 shows the mean and 95% confidence levels for the temperature dependence of sensitivity at 1ppm O_{3}.
Measuring Ozone at higher temperatures requires good casing design to ensure the Ozone reaches the sensor before reacting.
This data is taken from a typical batch of sensors.

Figure 2 Zero Temperature Dependence

Figure 2 shows the variation in zero output of the working electrode caused by changes in temperature, expressed as nA.

This data is taken from a typical batch of sensors.
Contact Alphasense for futher information on zero current correction.

Figure 3 Response from 200ppb to 0ppb O_{3}

Figure 3 shows response from 200ppb O_{3} to $0 \mathrm{ppb} \mathrm{O}_{3}$.

Use of Alphasense AFE circuit reduces noise to 15ppb, with the opportunity of digital smoothing to reduce noise even further.

Offset voltage is due to intentional AFE circuit electronic offset.

The OX-A431 detects both ozone and nitrogen dioxide $\left(\mathrm{O}_{3}+\mathrm{NO}_{2}\right)$. The NO2-A43F measures only nitrogen dioxide, filtering out ozone. Using these sensors together allows you to calculate the O_{3} concentration by subtracting the corrected NO2-A43F concentration from the corrected OX-A431 concentration.

Before subtracting to determine ozone concentration, ensure that the signals from the two sensors have been corrected for electronic zero offset, sensor zero offset and temperature dependence, and sensitivity ($\mathrm{nA} / \mathrm{ppm}$) calibration and temperature dependence.

Specification NO_{2} Sensing

Performance	Sensitivity to NO_{2} Response time Zero current Noise* Range Linearity Overgas limit *Tested with Alphasen	nA/ppm at 2 ppm NO_{2} t90 (s) from zero to $1 \mathrm{ppm} \mathrm{NO}_{2}$ $n A$ in zero air at $20^{\circ} \mathrm{C}$ ± 2 standard deviations (ppb equi ppm NO_{2} limit of performance ppm error at full scale, linear maximum ppm for stable resp FE low noise circuit	alent) ranty ro and 20 ppm NO_{2} to gas pulse	$\begin{aligned} & -200 \text { to }-550 \\ & <80 \\ & -70 \text { to }+70 \\ & 15 \\ & 20 \\ & < \pm 0.5 \\ & 50 \end{aligned}$
Lifetime	Zero drift Sensitivity drift Operating life	ppb equivalent change/year in \% change/year in lab air, mont months until 50\% original signa	air est 4-month warranted	$\begin{aligned} & 0 \text { to } 20 \\ & <-20 \text { to }-40 \\ & >24 \end{aligned}$
Environmental	Sensitivity @ $-20^{\circ} \mathrm{C}$ Sensitivity @ $40^{\circ} \mathrm{C}$ Zero @ $-20^{\circ} \mathrm{C}$ Zero @ $40^{\circ} \mathrm{C}$	```% (output @ -20}\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ /output @ 2 % (output @ 50` nA nA```	@ 2 ppm NO @ 2 ppm NO	50 to 80 115 to 130 0 to 25 20 to 50
Cross Sensitivity	$\mathrm{H}_{2} \mathrm{~S}$ sensitivity NO sensitivity Cl_{2} sensitivity SO_{2} sensitivity CO sensitivity $\mathrm{C}_{2} \mathrm{H}_{4}$ sensitivity NH_{3} sensitivity H_{2} sensitivity CO_{2} sensitivity Halothane sensitivity	\% measured gas @ 5ppm \% measured gas @ 100ppm \% measured gas @ 20ppm \% measured gas @ 100ppm \% measured gas @ 5% volume \% measured gas @ 100ppm	$\begin{aligned} & \mathrm{H}_{2} \mathrm{~S} \\ & \mathrm{NO} \\ & \mathrm{Cl}_{2} \\ & \mathrm{SO}_{2} \\ & \mathrm{CO} \\ & \mathrm{CO}_{2} \mathrm{H}_{4} \\ & \mathrm{NH}_{3} \\ & \mathrm{H}_{2} \\ & \mathrm{CO}_{2} \\ & \mathrm{Halothane}^{2} \end{aligned}$	$\begin{aligned} & <-100 \\ & <5 \\ & <100 \\ & <-3 \\ & <-3 \\ & <0.1 \\ & <0.1 \\ & <0.1 \\ & 0.1 \\ & <0.1 \end{aligned}$
Key Specifications	Temperature range Pressure range Humidity range	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & \mathrm{kPa} \\ & \text { \% rh continuous } \end{aligned}$		-30 to 40 80 to 120 15 to 85

Figure 4 Sensitivity temperature dependence to $2 \mathrm{ppm} \mathrm{NO}_{2}$

Figure 4 shows the temperature dependence of sensitivity at $2 \mathrm{ppm} \mathrm{NO}_{2}$.

This data is taken from a typical batch of sensors.

Figure 5 Response to $50 \mathrm{ppb} \mathrm{NO}_{2}$

The OX-A431 shows fast response and return to baseline, even at low concentrations.

Figure 6 Response from 200ppb to 0ppb NO_{2}

Figure 6 shows response from 200ppb NO_{2} to Oppb NO_{2}.
Use of Alphasense AFE circuit reduces noise to 15 ppb , with the opportunity of digital smoothing to reduce noise even further.

Offset voltage is due to intentional AFE circuit electronic offset.

[^0]
[^0]: NOTE: All sensors are tested at ambient environmental conditions, with 47 ohm load resistor, unless otherwise stated. As applications of use are outside our control, the information provided is given without legal responsibility. Customers should test under their own conditions, to ensure that the sensors are suitable for their own requirements.
 At the end of the product's life, do not dispose of any electronic sensor, component or instrument in the domestic waste, but contact the instrument manufacturer, Alphasense or its distributor for disposal instructions. NOTE: all sensors are tested at ambient environmental conditions unless otherwise stated. As applications of use are outside our control, the information provided is given without legal instructions. NOTE: all sensors are tested at ambient environmental conditions unless otherwise stated. As applications of use are ous
 responsibility. Customers should test under their own conditions, to ensure that the sensors are suitable for their own requirements.
 In the interest of continued product improvement, we reserve the right to change design features and specifications without prior notification. The data contained in this document is for guidance only. Alphasense Ltd accepts no liability for any consequential losses, injury or damage resulting from the use of this document or the information contained within.(©ALPHASENSE LTD) Doc. Ref. OX-A431/SEP22

